A biofilm is a complex combination of extracellular carbohydrates, proteins, lipids, and one or more species of bacteria that may adhere to an orthopaedic implant and surrounding tissue (see related OrthoBuzz post). Staphylococci bacteria are believed to account for more than 50% of all biofilm infections of medical devices.
Researchers recently summarized what we know about the biofilm formation process.1 In the attachment phase, free-floating bacteria attach to a prosthetic surface via proteins. Extracellular DNA from autolysis add to the mix. Then begins the irreversible attachment phase, during which the initial bacteria are incarcerated while more free-floating bacteria are added. During this phase, autoinducers are expressed, which serve as inter- and intrabacterial signals.
In the presence of an adequate quorum of bacteria, the maturation phase begins, during which the bacterial population cohesively shifts from replication to expression of virulence factors such as secretion systems, toxins, or biofilm formation. A mature biofilm is immune-resistant, although bacterial replication decreases. In the dispersal phase bacteria become planktonic again, potentially available to repeat the process.
Once a biofilm has formed, antibiotic administration becomes problematic because of the toxicity of the high doses needed to treat biofilm colonies. An underlying challenge with pharmacologic intervention is the variety of quorum-sensing communication pathways between bacterial species. The authors suggest that a future biofilm-fighting strategy may be to force bacteria into biofilm-forming behavior before they reach the necessary critical density to become virulent, although this notion remains unexplored. Researchers are investigating other possible strategies to disrupt the quorum-sensing communication among bacteria that enable them to behave as a “social” group.
Reference
- Mooney JA, Pridgen EM, Manasherob R, Suh G, Blackwell HE, Barron AE, Bollyky PL, Goodman SB, Amanatullah DF. Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res. 2018 Sep;36(9):2331-2339. doi: 10.1002/jor.24019. Epub 2018 May 24.