In the July 3, 2019 issue of The Journal, Ma et al. investigate the potential for human placenta-derived cells to augment the healing of chemically induced patellar tendon ruptures in rats. The injected placental cells introduced a transitory inflammatory response that led to increased load to failure at the 2-week mark, compared to biomechanical results in control rat tendons injected with saline solution. However, the addition of placenta-derived cells did not increase tendon load to failure beyond 2 weeks, and at no time point were differences seen between the control and experimental groups in tendon strength, stiffness, collagen organization, or cellularity.
While the positive results of this study were short-lived, they are important nonetheless. The animal model used is well thought-out and reproducible, allowing an easy path for future investigators to compare and contrast these results. Placenta-derived cell populations are widely available, and the authors clearly explained how the cells were processed, preserved, and delivered. With the increasing incidence of acute and chronic tendon injuries, and with the results of studies using other cell types being equivocal at best, these findings from Ma et al. are noteworthy.
Marc Swiontkowski, MD
JBJS Editor-in-Chief