Archive | Hip RSS for this section

Let’s Continue Improving Hip-Implant Longevity

In October 2017, JBJS published results from a 10-year randomized controlled trial by Devane et al. documenting the dramatic reduction in polyethylene wear in total hip arthroplasties (THAs) using highly cross-linked polyethylene (HXLPE). This followed decades of research documenting that wear debris was implicated in macrophage activity that was ultimately responsible for implant loosening. In the September 4, 2019 issue of The Journal, Hart and colleagues produce further evidence of the improved performance of HXLPE, this time showing revision rates among THA patients with osteonecrosis that rival the rates among patients with osteoarthritis.

In this matched cohort of 922 THAs performed from 1999 to 2007 that used an HXLPE bearing, the 15-year cumulative rate of revision was 6.6% among patients treated for osteonecrosis and 4.5% among patients treated for osteoarthritis (p = 0.09). There were no radiographic signs of component loosening in the entire cohort, and, despite a lower median preoperative Harris hip score (HHS) among patients with osteonecrosis, both groups had marked improvements in HHS score. These findings are especially noteworthy because patients with osteonecrosis typically undergo THA at an earlier age and have much higher functional demands than the typical 70- or 80-year-old osteoarthritis patient.

However, the 15-year revision rate—even with HXLPE—remains at 4.5% for osteoarthritis patients, which should provide impetus to continue our work identifying all possible factors and mechanisms that lead to THA revision. A partial list would include bearing-surface wear, reliability of implantation, biomechanics, biomaterials, and patient perception of postoperative pain. Also, in a subgroup analysis, Hart et al. found that the 15-year rate of any reoperation among osteonecrosis patients ranged from 0% for hips with radiation-induced osteonecrosis to 25% for hips with idiopathic osteonecrosis. These findings add to the list of factors for THA success that need further investigation.

The work list for improvements in THA will remain substantive for at least the next few decades, and we may never get to 0% revisions for all patients. But we have certainly demonstrated that our research can produce very worthwhile results.

Marc Swiontkowski, MD
JBJS Editor-in-Chief

Dual-Mobility Cups Lower Revision Risk in Some THAs

OrthoBuzz occasionally receives posts from guest bloggers. In response to a recent study in The Journal of Bone & Joint Surgerythe following commentary comes from Matthew Deren, MD.

Early or late dislocation after total hip arthroplasty (THA) is a dreaded complication, and performing a THA to treat a hip fracture is known to increase the risk of postoperative prosthetic joint dislocation. Large-diameter femoral heads, like those used in metal-on-metal implants, offered the prospect of decreased risk of dislocation. Unfortunately, their promise of improved stability was subsequently offset by serious issues with wear. Orthopaedics is notable for technology that promised to solve one problem but led to another, and some wonder whether the increasing popularity of THA using dual-mobility cups to reduce dislocation risk might lead to another example of this paradoxical problem.

However, in the July 17, 2019 issue of The Journal, Jobory et al. published a population-based prospective cohort analysis based on data from the Nordic Arthroplasty Register Association. That study demonstrated a reduced revision risk with dual-mobility acetabular components when THA was performed to treat hip fracture in elderly patients. The authors propensity-score matched 4,520 hip fractures treated with dual-mobility THA to 4,520 hip fractures treated with conventional THA. The study included surgeries from 2001 to 2014, and the median follow-up was 2.4 years for all patients.

Dual-mobility constructs had a lower overall risk of any-component revision (hazard ratio of 0.75), which persisted after authors adjusted for surgical approach (hazard ratio of 0.73). Additionally, the dual-mobility construct had a lower risk of revision due to dislocation (hazard ratio of 0.45), but there was no difference in risk of deep infection between the cohorts. There was no significant difference in risk of any-component revision for aseptic loosening (hazard ratio of 0.544, p=0.052) until the authors adjusted for approach, which resulted in a decreased risk of any-component revision for aseptic loosening (hazard ratio of 0.500, p=0.030). When the authors compared revision of the acetabular component only, they found a reduced risk of revision for any cause as well as revision for dislocation in the dual-mobility cohort using both unadjusted data and data adjusted for surgical approach. Mortality was higher in the dual-mobility group compared with the conventional-component group (hazard ratio of 1.5).

Overall, this study gives us more information regarding the short-term revision risks of an implant design that is gaining popularity in the US. Although dual-mobility constructs seem to be associated with a decreased risk of revision for dislocation in a population of older adults with hip fracture, this data tells us little about this design and technology when used in younger, more active patients, who are at higher risk of polyethylene wear.

Matthew Deren, MD is an orthopaedic surgeon at UMass Memorial Medical Center, an assistant professor at University of Massachusetts Medical School, and a member of the JBJS Social Media Advisory Board.

Good Outcomes and Savings with Preferred-Vendor Program

It has been said that outcomes of total joint arthroplasty are 90% related to surgeon factors (such as prosthetic alignment and fit and soft-tissue management), and only 10% to the implant itself. Historically, surgeon choices of implants for primary total hip and total knee arthroplasty have been based on influences such as the prostheses used during training, prior vendor relationships, specific patient characteristics, and findings in published literature. Absent evidence that the selection of prosthesis vendor affects patient outcomes to any significant degree, and with the universal focus on lowering health care costs, surgeon implant/vendor preferences have come under close scrutiny.

In the August 7, 2019 issue of The Journal, Boylan et al. study the impact of a voluntary preferred single-vendor program at a large, high-volume, urban orthopaedic hospital with >40 (mostly hospital-employed) arthroplasty surgeons. The hospital’s use of hip and knee arthroplasty implants from the preferred vendor rose from 50% to 69% during the program’s first year. In addition, the mean cost per case of cases in which implants from the preferred vendor were used were 23% lower than the mean cost-per-case numbers from the previous year (p<0.001). Boylan et al. noted that low-volume surgeons adopted the initiative at a higher rate than high-volume surgeons, and that surgeons were more compliant with using the preferred vendor for total knee implants than for total hip implants.

Why is it that some higher-volume surgeons seem resistant to change? It is not clear from the data presented in this study whether the answer is familiarity with an instrument system, loyalty to local representatives, or relationships with manufacturers based on financial or personal connections. The authors observed that “collaboration between surgeons and administrators” was a critical success factor in their program, and interestingly, the 3 highest-volume surgeons in this study (who performed an average of ≥20 qualifying cases per month) all used total knee implants from the preferred vendor prior to the initiation of this program.

The provocative findings from this and similar studies lead to many questions ripe for further research. Because hospitals are highly motivated to reduce implant costs in the bundled-payment environment, preferred-vendor programs are gathering steam. We need to better understand how they work (or don’t) for specific surgeons, within surgical departments, and within hospital/insurance systems in order to evaluate their effects on patient outcomes and maximize any cost benefits.

Marc Swiontkowski, MD
JBJS Editor-in-Chief

What’s New in Musculoskeletal Infection 2019

Every month, JBJS publishes a review of the most pertinent and impactful studies published in the orthopaedic literature during the previous year in 13 subspecialties. Click here for a collection of all OrthoBuzz Specialty Update summaries.

This month, Thomas K. Fehring, MD, co-author of the July 17, 2019 What’s New in Musculoskeletal Infection,” selected the five most clinically compelling findings—all focused on periprosthetic joint infection (PJI)—from among the more than 90 noteworthy studies summarized in the article.

Preventive Irrigation Solutions
–An in vitro study by Campbell et al.1 found that the chlorine-based Dakin solution forms potentially toxic precipitates when mixed with hydrogen peroxide and chlorhexidine. The authors recommend that surgeons not mix irrigation solutions in wounds during surgery.

PJI Diagnosis
–A clinical evaluation by Stone et al. showed that alpha-defensin levels in combination with synovial C-reactive protein had high sensitivity for PJI diagnosis, but the alpha-defensin biomarker can lead to false-positive results in the presence of metallosis and false-negative results in the presence of low-virulence organisms.

–In an investigation of next-generation molecular sequencing for diagnosis of PJI in synovial fluid and tissue, Tarabichi et al. found that in 28 revision cases considered to be infected, cultures were positive in only 61%, while next-generation sequencing was positive in 89%. However, next-generation sequencing also identified microbes in 25% of aseptic revisions that had negative cultures and in 35% of primary total joint arthroplasties. Identification of pathogens in cases considered to be aseptic is concerning and requires further research.

Treating PJI
–A multicenter study found that irrigation and debridement with component retention to treat PJI after total knee arthroplasty had a failure rate of 57% at 4 years.2

–Findings from an 80-patient study by Ford et al.3 challenge the assumption that 2-stage exchanges are highly successful. Fourteen (17.5%) of the patients in the study never underwent reimplantation, 30% had a serious complication, and of the 66 patients with a successful reimplantation, only 73% remained infection-free. Additionally 11% of the patients required a spacer exchange for persistent infection.

References

  1. Campbell ST, Goodnough LH, Bennett CG, Giori NJ. Antiseptics commonly used in total joint arthroplasty interact and may form toxic products. J Arthroplasty.2018 Mar;33(3):844-6. Epub 2017 Nov 11.
  2. Urish KL, Bullock AG, Kreger AM, Shah NB, Jeong K, Rothenberger SD; Infected Implant Consortium. A multicenter study of irrigation and debridement in total knee arthroplasty periprosthetic joint infection: treatment failure is high. J Arthroplasty.2018 Apr;33(4):1154-9. Epub 2017 Nov 21.
  3. Ford AN, Holzmeister AM, Rees HW, Belich PD. Characterization of outcomes of 2-stage exchange arthroplasty in the treatment of prosthetic joint infections. J Arthroplasty.2018 Jul;33(7S):S224-7. Epub 2018 Feb 17.

More Mortality Data on Hip Fractures in the Elderly

OrthoBuzz occasionally receives posts from guest bloggers. This guest post comes from Matthew Herring, MD, in response to a recent study in the Journal of Orthopaedic Trauma.

Among the elderly, low-energy hip fractures are common injuries that almost all orthopaedic surgeons encounter. While operative management is typically the standard of care, there are some patients for whom nonoperative treatment is most aligned with their goals of care, usually because of chronic disease, fragility, and/or high risk of perioperative mortality.

When counseling elderly patients and family members about the risks and benefits of surgical management for a hip fracture, we have abundant data. We can estimate the length of rehabilitation, discuss the likelihood of regaining independence with ambulation, and quote the 30-day, 1-year, and 5-year mortality statistics. But what about the risks and benefits of nonoperative care? How long do these patients live? How many are alive 1 year after the fracture?

Chlebeck and colleagues attempt to answer those questions with a retrospective cohort study of 77 hip fracture patients who were treated nonoperatively and a matched cohort of 154 operatively treated hip fracture patients. Nonoperative management was chosen only after a palliative-care consult was obtained and after a thorough multidisciplinary discussion of treatment goals with the patient and family. Patients who elected nonoperative care were treated with early limited weight bearing and a focus on maximizing comfort. Researchers established a comparative operative cohort through 2:1 matched pairing, controlling for age, sex, fracture type, Charlson Comorbidity Index, preinjury living situation, preinjury ambulatory status, and presence of dementia and cardiac arrhythmia.

As one might expect, there was significantly lower mortality in the operative group. The in-hospital, 30-day, and 1-year mortality for nonoperatively treated patients was 28.6%, 63.6%, and 84.4% respectively. The mortality rates seen in the operative cohort were 3.9%, 11.0%, and 36.4% respectively. A Kaplan-Meier survival analysis revealed the median life expectancy in the nonoperative cohort to be 14 days, versus 839 days in the operative group (p <0.0001). Interestingly, the researchers found no difference in hospital length of stay between the two groups (5.4 vs. 7.7 days; p=0.10).

These results provide useful references for orthopedic surgeons to use when counseling hip fracture patients and their families. Surgical intervention remains the standard of care in most instances, and this study suggests that operative care offers a significant mortality benefit over nonoperative care even in relatively unhealthy patients, like those selected for the matched operative cohort.

This study also gives us data to help guide the expectations of patients who decide surgery is not in line with their wishes. Half of the patients who elected nonoperative care in this study died within 14 days of admission, and only 15.6% were still alive at 1 year. Additionally, choosing nonoperative care does not lengthen hospitalization, suggesting that these patients can be quickly transferred to a more comfortable setting.

Matthew Herring, MD is a fellow in orthopaedic trauma at the University of California, San Francisco and a member of the JBJS Social Media Advisory Board.

Diagnosing Infection in “Dry” Prosthetic Joints

Despite a bevy of research and intense clinical focus, definitively diagnosing periprosthetic joint infections (PJIs) remains a major challenge in many patients. There is no single test that can confirm a PJI diagnosis with absolute accuracy, and surgeons often encounter clinical factors that make the diagnostic challenge even more complex. One such scenario is when a surgeon cannot aspirate enough fluid for culture from the affected joint of a patient who may have a PJI. In such situations, important microbiological data that would come from culturing synovial fluid are unavailable, leaving treating surgeons information-poor.

In the June 5, 2019 issue of The Journal, Li et al. provide surgeons with data about a controversial solution to this so-called “dry-tap” problem. The lead author performed aspirations on nearly 300 joints that were suspicious for periprosthetic infection. Eighty-two of those aspirations (29%) yielded ≤1.0 mL of synovial fluid. In those “dry-tap” cases, 10 mL of saline solution was injected into the joint, which was then reaspirated.

When comparing cultures from the aspirates that were the result of a saline lavage to those in which no lavage was performed, the authors found overlapping 95% confidence intervals in sensitivity, specificity, positive predictive value (PPV), and negative predictive value. However, the specificity (0.991 vs 0.857) and PPV (0.987 vs 0.889) were higher in the nonlavage cohort, even if those differences did not reach statistical significance. In addition, no significant differences were found between the groups in terms of relative frequencies of specific pathogen types.

Although the authors conclude that this lavage-and-reaspiration technique “is not necessarily inappropriate,” it is important to note that no post-hoc power analysis was performed, and therefore type II error needs to be considered because the study was probably underpowered. In addition, the International Consensus Meeting (ICM) recommends against lavaging a “dry” joint to obtain fluid for culture, largely because the injected saline will dilute results if a leukocyte esterase strip test or cell count is subsequently performed as part of the PJI-diagnosis process. Still, the authors point out that the data supporting the ICM’s recommendations against this practice are relatively weak, and the specificity and sensitivity data from this study are quite satisfactory.

So does this give us another option for determining whether a periprosthetic joint infection is present in patients from whom little or no synovial fluid can be obtained? Maybe. But this technique requires further investigation before it becomes widely implemented in practice. Without validation, it risks becoming just one more variable that could reinforce our own confirmation biases in these challenging cases. With further validation, however, it could allow pre-revision collection of valuable and accurate culture information from “dry” joints.

Chad A. Krueger, MD
JBJS Deputy Editor for Social Media

Pelvic Fracture Classification Will Benefit Elderly Patients

The orthopaedic community began to move away from individual fracture classifications in the mid-1980s. The basis for that shift was the need for wider recognition that fractures represent a “continuous variable,” with infinite varieties of orientations and combinations of fracture lines. Trying to fit fractures into a narrow classification system can lead to confusion and misinformation. Furthermore, surgeons often disagree when determining a fracture’s classification and, therefore, which treatment is best.

To move away from individual classification systems, orthopaedic journals have generally moved toward the compendium of fracture classifications approved by the OTA and AO. Still, there are times when a new fracture classification seems appropriate, and in the June 5, 2019 issue of The Journal, Pieroh et al. have provided us with an example that classifies fragility fractures of the pelvis (FFP). The 4-group FFP classification is based on fracture morphology with different degrees of instability and includes treatment recommendations.

The authors collected the CT scans of 60 patients from 6 different hospitals who were ≥60 years old and had sustained a pelvic fracture from low-energy trauma. These CT scans were shown to 6 experienced surgeons, 6 inexperienced surgeons, and 1 surgeon who had direct experience/training with the FFP system. Each surgeon was asked to classify the pelvic fractures according to the FFP classification. Inter- and intra-rater reliabilities for the fracture classifications were calculated from these readings, and the overall inter-rater Kappa coefficient was found to be 0.53, while the overall intra-rater Kappa coefficient was 0.46 (Kappa coefficients of 0.61 to 0.41 constitute “moderate” reliability). In terms of percent agreement, there was greater agreement between surgeons when it came to classifying FFP Group 1 fractures than for FFP Group 2 and 3 fractures. This is noteworthy because Group 3 fractures are thought to require surgical treatment, while primary treatment for Group 2 fractures is usually nonoperative.

Pelvic fractures that are associated with low bone density and low-energy trauma are becoming increasingly frequent as our population continues to skew older. Having a validated, relatively straightforward classification system like the FFP to assist us in managing these patients will be of great assistance. The sound methodology used to develop the FFP classification system and its decent reliability, face validity, and construct and criterion validity can assure all of us about the usefulness of the FFP classification as the basis for future clinical investigations and to advance the care of these patients.

Marc Swiontkowski, MD
JBJS Editor-in-Chief

FDA Approves Rapid Alpha-Defensin Test for PJI

The US FDA has approved the Synovasure Alpha Defensin Lateral Flow Test Kit for helping detect periprosthetic joint infection (PJI) in the synovial fluid of patients being evaluated for revision joint replacement.

Alpha defensins are proteins released by neutrophils in early response to infection. OrthoBuzz previously summarized a 2018 JBJS study that found this rapid alpha defensin test to have 96.9% overall accuracy.

In the FDA news release about the approval, Tim Stenzel, MD, director of the FDA’s Office of In Vitro Diagnostics and Radiological Health, said the test provides health care professionals with additional information that “could potentially reduce patient risk by avoiding unnecessary revision operations for replacement joints.”

In a Commentary on the 2018 JBJS study, Garth Ehrlich, PhD and Michael Palmer, MD said the device is a “substantive advance,” but not “a panacea.” For one thing, metallosis would still need to be ruled out with MRI, because that noninfectious etiology triggers a false-positive result with this rapid test. Synovasure is also likely to miss detection of slow-growing, chronic bacterial pathogens such as Proprionibacterium acnes, the commentators said.

The Synovasure test kit received approval through the FDA’s de novo premarket pathway, which is reserved for “low- to moderate-risk devices of a new type,” according to the agency.

Electrocautery Damages Metal Hip Implants in 2 Ways

In the setting of revision total hip arthroplasty (THA), the use of electrocautery—and contact between the thermal device and retained components—cannot always be avoided. In the May 15, 2019 issue of The Journal of Bone & Joint Surgery, Sonntag et al. perform two implant-retrieval analyses and a separate in vitro investigation to determine what kinds of damage take place when electrocautery energy meets titanium femoral stems.

The components for retrieval analyses were removed from patients who experienced a fracture of the femoral stem or femoral neck after revision THA. The authors found superficial discoloration and melting marks on the retrieved components, and elemental analysis indicated that material had been transferred from the electrocautery tip. During in vitro testing of 6 titanium alloy femoral stems, the authors found that electrocautery surface damage reduced load-to-failure by up to 47% when compared to undamaged femoral neck specimens. Microscopic analysis revealed notable changes in metal microstructure in electrocautery-exposed components, whereby certain zones exhibited higher strength than others, which, the authors speculate, might result in lower overall fatigue resistance.

Both the retrieval and in vitro analyses showed that electrocautery damage to femoral implants, particularly in the anterolateral region at the base of the neck, reduced implant fatigue resistance. However, the authors say their results need to “be carefully interpreted,” because they are based on only 2 retrievals and a limited number of test specimens. Nevertheless, they conclude that “electrocautery device contact [with femoral implants] should be avoided and the use of conventional scalpels is recommended, where reasonable.”

The Economics of Revision THA for Fractures: Sustainable?

At the risk of  economic oversimplification, it is difficult to sustainably provide a service when payment for it is less than the cost to perform it. But that is one reality exposed by Hevesi et al. in the May 15, 2019 issue of The Journal. Using National Inpatient Sample and ACS-NSQIP data, the authors compared the average costs and 30-day complication rates for revision total hip arthroplasties (THAs) performed for 3 different indications—fractures, wear/loosening, and instability—at both a local and national level. They found that the average hospitalization costs associated with a revision THA related to a fracture were 33% to 48% higher (p < 0.001) than the cost of revision THAs related to wear or instability.

However, the authors emphasize that all 3 of these indications for revision THA are reimbursed at the same rate based on Medicare Diagnosis-Related Group (DRG) codes. DRGs take into account patient comorbidities to determine reimbursement levels—but they do not adjust payments for THA revision according to indication. Hevesi et al. note that the only DRG reimbursement level that would cover the average cost of a revision THA for a fracture would be one performed on a patient with severe medical comorbidities or a major complication. Not surprisingly, patients who underwent a revision THA to treat a fracture were found to have a higher age and more medical comorbidities than those undergoing a revision for wear or instability.

The authors use this data to make a very compelling case that DRGs for revision THA should be changed so they are indication-specific, taking into account the underlying reason for the revision. They observe that “a DRG scheme that does not distinguish between indications for revision THA sets the stage for disincentivizing the care of fracture patients and incentivizing referrals to other facilities.” Those “other facilities” usually end up being large tertiary-care centers, which the authors claim “perform a higher percentage of the costlier revision THA indications.”

This problem of reimbursement inequality is not unique to revision THAs and requires further investigation in many fields. Unless “the system” addresses these subtle but important differences, tertiary referral centers may be inundated with patients who need procedures that cost more to perform than the institutions receive in reimbursement—an unsustainable scenario.

Chad A. Krueger, MD
JBJS Deputy Editor for Social Media